Temperature-Phase Converter Based on a LC Cell as a Variable Capacitance

نویسندگان

  • Juan Carlos Torres
  • Braulio García-Cámara
  • Isabel Pérez
  • Virginia Urruchi
  • José Manuel Sánchez Peña
چکیده

The main characteristic of liquid crystals is that their properties, both electrical and optical, can be modified through a convenient applied signal, for instance a certain voltage. This tunable behavior of liquid crystals is directly related to the orientation of their nanometric components with respect to a director direction. However, the initial alignment is a fabrication-dependent parameter and may be either planar or homeotropic. In addition, the strong dependence of the properties of liquid crystals with the temperature is well known and widely used for several temperature sensors. This dependence is produced by the influence of the temperature on the ordering of the molecules. In this work, we have studied the temperature dependence of the electric properties of a liquid crystal cell, in particular the dielectric permittivity, with the temperature as a function of the initial alignment set during the fabrication process. Starting from experimental measurements, an equivalent circuit model including the temperature dependence has been proposed. We have observed that a good linearity in a wide temperature range is provided at a suitable exciting frequency. Finally, a proper conditioner circuit is proposed as a powerful tool for linear and high sensibility temperature measurement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature-Frequency Converter Using a Liquid Crystal Cell as a Sensing Element

A new temperature-frequency converter based on the variation of the dielectric permittivity of the Liquid Crystal (LC) material with temperature has been demonstrated. Unlike other temperature sensors based on liquid crystal processing optical signals for determining the temperature, this work presents a system that is able to sense temperature by using only electrical signals. The variation of...

متن کامل

A Low Capacitance Cascaded H-bridge 7-level Statcom

This paper introduces a cascaded H -bridge multilevel converter (CHB-MC) based StatCom system that is able to operate with extremely low dc capacitance values. The theoretical limit is calculated for the maximum capacitor voltage ripple, and hence minimum dc capacitance values that can be used in the converter. The proposed lowcapacitance StatCom (LC-StatCom) is able to operate with large capac...

متن کامل

A Capacitive Sensor Interface Circuit Based On Phase Differential Method

(1247) A 70°Phase Margin Differential OPAMP with Positive Feedback in Flexible a-IGZO TFT Technology Authors: (1306) Flexible PVDF Ferroelectric Capacitive Temperature Sensor (1898) Biomedical Sensor Interface for PLI Cancellation (1967) A Driver Circuit based on the emerging GaN-on-CMOS Process. Controller and Differential Sensing Circuit. Sang Hyuck Bae A fully differential circuit was design...

متن کامل

A New Structure of Buck-Boost Z-Source Converter Based on Z-H Converter

In this paper, a new structure for buck-boost Z-source converter based on Z-H topology is proposed. The proposed converter consists of two LC networks similar to the conventional Z-source and Z-H converters. One of the characteristics of the proposed structure is that, without any changing in its’ power circuit, it can be used in different conversions such as dc/dc, dc/ac and ac/ac. This unique...

متن کامل

Resonant-Based Capacitive Pressure Sensor Read-Out Oscillating at 1.67 GHz in 0.18

This paper presents a resonant-based read-out circuit for capacitive pressure sensors. The proposed read-out circuit consists of an LC oscillator and a counter. The circuit detects the capacitance changes of a capacitive pressure sensor by means of frequency shifts from its nominal operation frequency. The proposed circuit is designed in 0.18μm CMOS with an estimated power consumption of 43.1mW...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015